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HYBRIU SIMULATION CODES WITH APPLICATION TO SHOCKS AND UPSTREAM WAVES
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ABSTRACT. Hybrid codes in which part of the plasma is represented as
particles and the rest as a fluild are discussed. In the past few
years such codes with particle ions and massless, fluid electrons
have been applied to space plasmas, especially to collisionless
shocks. All of these simulation codes are one-dimensional and simi-
lar in structure, except for how the field equations are solved. We
describe in detail the various approaches that are used (resistive
Onm's law, predictor-corrector, Hamiltonian) and compare results from
the various cuues with examples taken from collisionless shocks and
low frequency wave phenomena upstream ol shocks.

1. INTRODUCTION

Plasma physics phenomena are characterized by a multitude of length
and time scales, primarily due to the different responses of the
light electrons and the massiv~ ions to the imposed and self-gener-
ated electric and magnetic fle.ds. Typically, one is interested in
particular processes which occur on some of these scales and not
interested in other processes that occur on shorter or longer time or
distance scales. This can be accomplished in numerical simulation by
treating t‘he various plasma specles in different ways, for example,
as discrete particles or as fluids. Hybrid codes are defined as
those numerical algorithms in which the various plasma species are
treated in a different manner, as distinct from particle codes whers
all the plasma specles are treated as particles or fluld codes where
each species (or several species together) is treated as a flulid.
Various types of hybrid codes are of course possible, depending
on the problem at hand. One important subclass of hybrid models are
those in which there are two (or more) populations of one particular
charge species, whose properties on a partioular length or time scale
are different. For example, consider the interaotion of a asmall,
cold electron beam with a hot background electron population (O'Neil



et al., 1971). In this case the unstable waves generated by the
presence of the beam strongly affect it, and thus a particle descrip-
tion is needed to correctly model the highly nonlinear dynamics of
the beam electrons. On the other hand, the waves do not affect the
background population very much, Thus, there is no need to follow
the dynamics of each individual background electron; rather, the
contribution of the background component can be included simply as a
linear dielectric in Poisson's ¢quation. Similar methods can be used
when there are several lon populations, For example, in the study of
the interaction of an lon ring velocity distribution with a back-
ground ion core, Lee and Birdsall (1979) treated the ring ions as
discrete particles, with a fluid description fo,- the background ions
(and the electrons).

The most common type of hybrid code, however, occurs when the two
species involved are the electrons and ions. The simplest kind of
hybrid model of this type 1s to ignore one speclies entirely. For
example, in the study of high frequency electron behavior it is
very common to eliminate the lons, except as a charge-neutralizing
background. It i{s also possible to ignore the electrons entirely, as
has been done for tearing mode calculations (Dickman et al. (1969)
and later work to be cited in the next section). Another useful
approximation that 1s commonly invoked in this type of hybrid model
is quasineutrality, which makes use of the fact that the electron
(n.; and ion (n,) charge densities are nearly equal. If one is in-
terested in scaie lengths much larger than the Debye length, the
condition ny, = ny is imposed; for smaller systems, a Boltzmann rela-
tion between the electron charge density and the electrostatic poten-
tial may be used instead, which gives rise tc a nonlinear Polsson
equation. (Okuda et al., 1978). Another common approximation in-
volves the electron mass. Depending on tine frequency range of lnter-
est, the electron mass may be kept (Hewett and Nielson, 1978) or not.

A very common type of hybrid code, and the one of {nterest
throughout the rest of this chapter, treats the electrons as a
massless, charge—-neutralizing fluid. 1In recent years this type of
model has bucome widely used in space physics for the study of phe-
nomena at the bow shock (Leroy et al. 1981 and 1982; Leroy and
Winske, 1983, Kan and Swift, 1983; Mandt and Kan, 1985), upstream of
the bow shock (Winske and Leroy 198Ua; Winske et al. 1984 and 1985;
Hada and Kennel, 1985), the magnetopause (Swift and Lee, 1983), the
magnetotail (Swift, 1983b), and the magnetosphere (Omura et al. 1985;
Tanaka and Goodrich, 198%5).

While all of the calculations cited here are based on hybrid
models with similar properties, there are differences in the way the
models are implemented numerically, primarily in how the field equa-
tions are solved. Three different techniques, referred to hereafter
as che resistive (Ohm's law) method, the predictor-corrector method,
and the Hamiltonian method, have been employed. The purpose of this
paper is to explain how these various methods work in some detail
(Section 2) and then compare results of simulations based on each
method (Section 3). The examples chosen are well rtudied phenomena
from the earth'es bow shock and the upstream region, and the discus-
sion will e:phasize numerics rather than the physics content, A
short summary is given in Section 4.



2. DESCRIPTION OF HYBRID CODE MODELS

In this section the numerical schemes used in three hybric code mod-
els are described. In each case particle-in-cell techniques are
employed for the ion dynamics, while fluid equations are used for the
(massless) electrons. Quasineutrality is assumed and the low fre-
quency (Darwin) approximation is used (Nielson and Lewis, 1976). For
the methods described here the one-dimensional nature of the calcula-
tion is utilized, but as will be discussed, each of the models has
been generalized to two spatial dimensions.

2.1 Resistive Ohm's Law Method

This model was originally devised by Chodura (1975), and further
developed by Sgro and Nielson (1976) and Hamasak!i e* al. (1977), for
the analysis of laboratory magnetic fusion experiments and more re-
cently for the study of the earth's bow shock by Leroy et al. (1981,
1982). The detalls of the method and refersances to earlier work are
given by Winske and Leroy (1984b). In this method, as in the two to
follow, a standard leapfrog scheme is used to advance the particles
and flelds. The velocities of the particles are known at the half
time steps, while positions of the particles and the fields are known
at the maven time steps (time leﬁela to Be dﬁnotﬁd by superscripts).
Thus, at time step N, we know v =172 4N gN, B To advance the
particles, we solve

- - m - - -

dt At
éggliﬁitly by substituting vN - (vN”/2 + vN'1/2)/2 and solving to
a - = ~
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+

Atg (gN o Y + W x BN/0)
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and then

NN Atva+1/2 ()

Wa then solve Ampere's law

2, N+1  _Un , N#¥1
VAr o7 (5)
0 e
for the transverse components (y or z). The ion part of the current

oomes directly from collecting the ion moments, where we advance (but
do not save) the particles one additional half time atep

1N4-1 - _V.N""/Z . -A_f:i (EN . 1N+1/2 X EN/O) (6)
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where EN and BN are evaluatea at x*', to obtain the ion density

n,N*1 and velocities !1N+1. Quasineutrality (in 1-D) then gives n_ =

ny = nandV, =V =V, €
The elecgron part of the current comes from the electron momentum
equation with a res.stive term (i.e. Ohm's law)
« 0= - - L) .
mg dVg = 0 = =qQng(E + Vg x B) -~ ° n.T, + angn'd 1)
—_— —_— 9x
dt c
After solving for ATN‘1
way

(descr’bed shortly), we obtain in the usual

Br = Vx Ar (Bx = conatant)

_E.';l_gir (8)
c dt
Then solving an energy equation for Te'
ov 2
38 nT,+ 9 (3nT.V_ ) + nT ex = nJ (9)
2 at ° x 2 zex € X

we can obtain the last field component, E,» from the x component of
(7)

Ey = -1 Wa X B)y = 1 onT (10)
e nq ox

The method used to solve (5) for A. is slightly different from
that presented in Winske and Leroy (1984b) and works better for
oblique shocks. We assume the resistivity tensor to be diagonal (i.e.
ny =n; =n), which has been shown to correctly model turbulent sys-
tems, such as the z-pinch, very well (Sgro and Nielson, 1976). We
solve

Jr = 0 V(E + ¥, x B/e)p = qnVy - V,)q (1)
for V,r . and substitute into (5), obtaining

-c 3%A, = F_ +6F

graion S Erar &

ox
(12)

-c 3%A_ = F_ - §&F
hn ax2 1+ 82
where
Fy - qn(Viy = cE, - anx)
B, B,
Fy = an(Vy, + cE, - V,B,) (13)
B B



U (E)E)(E)
n, Yq qB,
and no-reference density, w;.=(linn q2/m)1/2. and all quantities are
at time level N+1, Using (é? to express ET and Br in terms of AT.
(12) can be written in finite difference form and solved, as de-
scribed in Winske and Leroy (1984b).

In addition to the references cited in Winske ard Leroy (198u4d),
calculations based on this method have been done to study oblique
shocks (L.eroy and Winske, 1983), the electromagnetic ion beam insta-
bility (Winske and Leroy, 1984a), the interaction of heavy ions with
the solar wind (Winske et al. 1984 and 1985) and the steepening of
slow waves ‘Hada ziu Kennel, 1985). The method has been exteaded to
two dimensions (Hewett, 1980) and has been applied to the study of
magnetic reconnection in laboratory experiments (Hewett, 1984).

2.2 Predictor-Corrector Method

A second method used for hybrid code calculations smploys the
predictor-corrector technique. The method is described by Byers et
al. (1978) and has been implemented in a one-dimensional code by
Tanaka and Goodrich (1985) and Omura et al. (1985) in the study of
heating of heavy ions by lon cyclotion fnstabilities. The method
has been extended to two dimensions by Harned (1982) and used in the
study of rotational instabllities in laboratory field-reversed con-
figurations (Harned, 1983).

We will describe the method in its simplest form, where the elec-
tronvﬁemysratﬁre ﬁs kept constant. Again, we assume at time step N
the y X, 2nd B" are known. In this case the advance of one
time . step involves two steps. a predictor step and a corrector step,
each of which involves sﬁlq§ througn %he particle table.

In the first step, and x are obtained as in the previ-
ous case using (1) - }h) N In t e_process, however, we first advance
thﬁ ?articles (o} } 2 +Atvx 2/2 to collect the ion moments,

J and n We then compute the predictor fields (denoted
by subscript p) using Faraday's law and (7):

N+1/2 N cAt N
B - VxE
(e (y)

EN"‘1/2 (mN"'/?_ N“1/2) X BN+1/2 -T vn N*T/c}
N+1/2
to obtain
EN*! = g 4 2EN*V/2
_pN+1 ;+1/2 - cAt N+1 (15)
BN L o172 - et (g V)
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We then go thru the particles again, using the predictor fields,
to calculate v.**3/2 ang x N’3/2. agaln using (1) - (4), in order to
collect J1 pN—§/2 and ng P ’3/2. Then, we calculate B N+3/2 and

E N*3/2 ysing (14) with predictor fields EN*', B ¥V and 1on moments

—p =P
8 ovtain ﬁh? I PR TE VN
(E =p
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Having now advanced the fields, we are thus ready to start the entire
sequence again.

2.3 Hamiltonian Method

This method employs the canonical momenta of the particles P in place
of the velocities. A descriptinn of the method is given, for exam-
ple, by Morse and MNielson (1971), and a comparison between the
Hamiltonian and Lagragian methods is discussed by Nielson and Lewis
(1976). The Hamiltonian method has been used by Swif* and Lee (1983)
to study the rotational discontinuity at the magnetopause, Swift
(1983b) to examine magnetic slow shocks, Kan and Swift (1983) and
Maadt and Kan (1985) to simulate nearly parallel shocks. The method
has been generalized to twc spatial dimensions in the limited sense
of elther coumpletely ignoring the electrons (Dickman et al., 1969;
Ambrosiano et al.; 1983; Teresawa, 1981) for the study of tearing
mcdes and ion fusion physics (Friedman et al,, 1977; Mankofsky et
al., 1981; Mankofsky and Sudan, 1984) or r in . restricting the =ypee of
purturbations allowed (Swift, 1983a)

In this case, at time step N, the canonical momenta of the parti-
cles

ET = ovp * q&T/c (17)

are known at the half time step N-1/2. The particle equation of
notion s

_gz; " q (yp x By X) (18)
4t <

Note that in the case Bx-o the method can be very zitractive since Pr
is a conserved quantity. Using (17), (18) can be written as

dPp = qBy (Pp - aAp) x X (19)

dt me c

Another nice feature is that using a complex representation (P = Py +

iP,, A = A iA,, 1 = gB,/mc) the equations of mction can be written
oompaotly Za

PN o (e - gab) (20)
at c



or
e'iﬂt g_ PNeIQt - ingEN (21)
dt c
Thus, in difference form (Swift and Lee, 1983)

pN+1/72 | pN-1/2,-10At , 4,

_ ng ANe"iﬂAt/z (22)
c
Then
N N+1/2 N-1/2, _ N
ypoo=__ (Bp i ) =_qAz"
2m me (23)

is known and Yy can be advanced

va+1/2 - va'1/2 + th (ExN + XTN X ETN/C) (2“)

m

as can the particle positions, xN’1. using (4). (I have used v_ here
for simplicity. It is possible to write Px = mv, (Ax-o, since ﬁ:& -
0) and use P's throughout.)

Again, we need to solve Ampere's law (5). There are several

different ways to difference the equations. One method is to use
(22) to advance P.I-N”/2 to PTN'3/2 and express it in terms of PTN+1/2
and AIN+1. Another (Swift and Lee, 1983) is to solve

V?ATN 1/2--111511__.1."”/2/@ expressing AJN+1/2 as an average between.ATN
and Ar In either case the resulting equation is implicit in that

N+1

it involves AmN+1 on the right hand side. This adds a slight compli-
cation, known as double area welghting, in gathering the moments, as
described by Forslunﬁ+$£.§l. (1972), Forslund (1974) and Mankofsky et
al. (1981). Once Ag 1s known, E and B can be obtained using (8).
An equation for T_, such as (9), can be solved {Kan and Swift (1983)
use an equation o? state instead), and then Ex can be obtained as
before, from (10).

¥inally, 1t should be noted that there is an extra complicstion
If there is an external B, or B, in the system. A constant B, can be
added in through an additYonal %erm A, = B,x. This contributfon to
P, of the particles must be added or !ubtracted if the boundary con-
ditions are such that particles exiting at one end of the system
reenter at the other end.

3. NUMERICAL COMPARISON OF THE MODELS

In this section we compare results of simulations based on the three
hybrid models discussed previously for two tust problems. The first
1s an electromagnetic ion beam instability, the second is a
quasiperpendicular collisionless shock. Both problems have been well
studied, and the reader is referred to the literature for details,
The first problem involves the inn beam instability, which {s
thought to be the mechanism which produces low freq.ency
hydromagnetic waves and diffuse ion populationa upstream of the
earth's bow shock (e.g., see Gary et al. (19L1) and Winske and Leroy
(1984a8)). The instability results rrom the interaction of a weak



beam of ions backstreaming from the shock and the incident solar
wind. The situation to be simulated consists of an ion beam drifting
relative to an ambient plasma along a uniform magnetic field B.. The
parametery are chosen to match those in Winske and Leroy (1984a) for
the resonant instability: the beam i3 weak, 1.5% of the total ion
density, with a drift speed of 10 g relative to the background ions.
Both ion components have B=8wnT/B, -1 0, with a cold (8,~0.01) cur-
rent-neutralizing electron bac kground The instability leads to the
generation of low frequency waves of well defined wavelength that
acatter the beam. In the nonlinear regime these regular waves break
up into very nonlinear waveforms, producing a diffuse ion distribu-
tion in the process.

In Figure 1 We compare results of three simulation, The top
pa'els correspond to the resistive code with n=0; the middle panels
are from the predictor-corrector code; the bottom panels are from a
code based on the Hamiltonian method. In each case we have used
10,000 partir es (half to represent the beam, half for the bdackgrcund
ions) on a g of 256 cells with cell size Ax=c/w;. 1In each case we
use the same random numbers to initialize the particle velocities.
The left side of the figure shows one component of the magnetic
field, Bz. normalized in %“erms of the ambient field B, at about the
time when the waves have achleved their largest amptttude. Qit-38 u

=eB_./m c) The results from the three cases are very similar,

}fer?ng only in the amount of low amptitude, short wavelength noise
that 1s superimposed on the dominant structures. The right side of
the figure shows the timS histories of the fluctuating magnetic field
energy dens‘ty, W -fde /fde . Again, the overall results in each
case agree very well %he peak fleld energy density achieved is
slightly (~3%) larger in the predictor-corrector case, which may be a
reflection of the oetter energy conservation in the
predictor-corrector code (AE/E_.~0.03%), compared with the resistive
code (AF/E -1.2%) and the Hamiftonian node (AE/E ~5.4%). The poorer
energy conservation in the Hamiltonian code suggests that the
differencing scheme used here for the test problem could be improved
and should not be taken as an indication that this method is inher-
ently inferior.

The sncond test problem involves a quasiperpendicular
collisionless shock. Again, in this case the physics has been inves-
tigated in detail (Leroy et al, 1981 and 1982; Leroy and Winske,
1983; Forslund et al., 1984). The simulation is inictialized with
uniform upstream m and downstream States related by Rankine-Hugoniot
conditions and then is allowed t0 evolve {n time. The parameters
chosen for the test case are upstream Mach number M -V1/VA-8, up-
stream shock normal angle 6p,=60°, and upstream B =g;~0.5. Again, we
show (Figure 2) the results of three simulations: top panels corre-
spond to the resistive code with resistive length L = (nwy /lUnw)
(o/V1)(c/w equal to the r:ll size Ax=0.3 c/uwy, migdlo panels corre-
spond to tée results of the resistive code ulth Lr=0.014x, and bottom
panels correspond to the resistange-free predictor-corrector code.

In each case 10,000 particles on a grid of 200 cells with a time step
Ryat=0.0125 (uhere the upstream magnetic field B, is used to compute
ay).



The left side of Flgure 2 shows one component of the transverse
magnetic field B, at Q;t=12.5. The upstream magnetic field is to the
left in each plcture; the shock occurs in the center where the mag-
netic field rises rapidly. The peak value of the magnetic field
component B, 1s somewhat larger than the downstream value B 2 (com~
puted from %he Rankine-Hugoniot relations), which is held rfxed at
the right hand boundary. This peak value, referred to as the
overshoot, Is followed by an undershoot and then several more
oscillations. The middle panel shows the same snapshot of the mag-
netic field in the run where the resis.ivity is lowered. The same
overall stucture is observed, except that the overshoot ls larger and
the osclllations behind the overshoot are somewhat less regular. In
addition, there are small osclllations on the magnetic field in the
upstream reglion and tre sharp rise of the magnetic field is better
resolved, consisting of a precursory smaller increase (called the
foot) and a very steep ramp. The field profile obtained with the
predictor-corrector code (bottom panel) shows the same general fea-
tures as in the second case, except that the oscillations behind the
shock are somewhat larger in amplitude and have a shorter wavelength.

The rignt hand panels of Figure 2 show the time histories of the
nagnetic overshoot for the three runs. In the case with the larger
resistivity, the overshoot has a nearly constant value, For small
resistivity, the overshoot oscillates in time and the average value
1s about 20% larger. The resistance-free predictor-corrector code
gives a slightly larger average overshoot with larger, more frequent
oscillations.

We conrlude from these results that the three shock simulations
give overall similar results, but the effect of resistivity 1s to
damp out some of the oscillations. This naturally leads to the ques-
tion of how much resistivity (if any) should be included. It should
be kept in mind that the resistivity is added in to compensate for
the fact that the simulations are one-dimensional and therefore do
not include microinstabilities due to the cross-field current that
are seen, for examgle, in 2-D particle simulations of shocks
(Forslund et al., 1984). In the present simulations, as in Leroy et
al. (1982), the resistivity is taken as 2 constant, although more
realistic forms for the resistivity, either based on phenomenological
expressions (Chodura, 1975) or microphysics (Hamasaki et al., 1977)
are possiole. In this regard, one has to be guided by space observa-
tions or laboratory data (which indeed show rather steady structures)
to infer the proper amount of resistivity that should be used,

As a final note, the question of resistivity becomes increasingly
complex as the Mach number is raised. Quest (1985) has recently
carried out resistive hybrid simulations of perpendicular shocks with
Mach numbers greater than 20. He {inds that a shock which is fairly
steady in time can be produced with resistivity such that LR-Ax. but
that with weaker resistivity the magnitude of the oscillations of the
overshoot is comparable to its average value. In this case the shock
steepens to a very narrow (~Ax) width, then collapses. Because the
amount of resistivity that would be needed to maintain the shock
steady is unphysically large at high Mach numbers, it is suggested
that very high Mach number shocks indeed are oscillatory in character
(Quest, 1985),
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y. SUMMARY

We have described hybrid codes in which the various plasma species
are given different representations. Specializing to the important
case where the lons are treated as particles and the electrons are a
messless, charge-neutralizing fluid, we have discussed irn some detail
three ways for solving the field equations, referred to here as the
resistive, predictor-corrector, and Hamiltonian methods. Using simu-
lation codes based on each of these techniques, we have compared
results for two problems of current Interest in space physics: low
frequency waves driven by an lon beam and quasiperpendicular
collisionless shocks. For the ion beam problem all three methods
give essentially the same results, with the predictor-corrector
method giving better overall energy conservation, In the case of the
quasiperpendicular shock, the effect of the resistivity on producing
time steady solutions has been emphasized. While the use of these
codes in one spatial dimension has been stressed throughout this
article, all three methods discussed work in two dimensions, and will
undoubtedly become widely appllied in space physics, as they have
already in magnetlic fusion problems,
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Figure 1. Results cf three different hybrid simulations of the
electromagnetic ion beam instability (top: resistive mode); middle:
predictor-corrector model; bottom: Hamiltonian model) showing: (left) one
component of the {luctuating magnetic fileld at Q,t = 38.4, {(right) time
history of the fluctuating magnetic field energy densiiy.
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Figure 2. Results of three hybrid simulations for a quasiperpendicular
shock (top: resistive code with large resistivity; middle: resistive code
with smaller resistivity; bottom: predictor-corrector code) showing:
(left) one component of the magnetic field at Q;t = 12.5, (right) time
history of the magnetic field overshoot.



